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ABSTRACT 
 
The traditional rules for geometrical design of railroad track stipulate that when the curvature of the 
track needs to change  (as, for example, when a section of tangent track is followed by a curve), the 
curvature should not change abruptly but rather should change linearly with distance. The geometrical 
curve shape in which the curvature changes linearly with distance along the curve is a form of spiral 
that is generally referred to by railroad track designers as a clothoid spiral. The present paper observes 
that the clothoid spiral is not a good form of spiral from the point of view of rail vehicle dynamics and 
illustrates earlier suggestions for improvement of spirals. The paper then explains a better way to 
approach the design of railroad track transition spirals and presents numerous examples showing how 
more logically designed spirals compare with traditional spirals. 
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1 Introduction 
 
The author became interested in the question of spiral shape as a result of a study of the possibility of 
substantial reduction of travel times between Washington, D.C. and New York City through the 
combination of high train speeds and higher than normal superelevations of curves. It was found (ref. 
1) that extra large superelevations would have great value in that corridor if they could be made 
practical. Leaving aside the various operational and safety questions that extra high superelevations 
would raise, there was also the question of whether track alignments with highly elevated curves could 
stay within the railroad property lines, given the long spirals that would be required. This led the 
author to think about the physical logic of spiral design and to wonder whether a spiral design starting 
from basic physics might have more degrees of freedom than the traditional clothoid spiral. 
Consideration of this question led to a new spiral design concept. In 1984, the FRA provided some 
support for testing whether or not the new design concept would allow design of very highly elevated 
spirals that could stay within railroad property lines in the North East Corridor. The results were 
positive in all respects. However, there did not seem to be very much interest at the time in putting the 
new design method into practice. A modified version of the 1985 report to the FRA was contributed to 
the AREMA Annual Meeting in Dallas, TX in September of 2000 and included in the proceedings of 
the Meeting (ref. 2). In comparison to reference 2, the present paper offers additional insight, new and 
better spiral shapes, and simpler presentation of the mathematics of the design method.  
 
2 The traditional Spiral and its deficiency 
 
Railroad alignments normally consist mostly of sections of tangent track and sections of curved track 
in each of which the curvature is constant. Tangent track can be thought of as track with constant 
curvature having the particular curvature value of zero.  
 
A section of curved track over which vehicles travel with substantial speed is generally banked by 
having the rail on the outside of the curve raised relative to the inner rail. It is obvious that tangent 
track which is not banked cannot be connected directly to curved track that is banked. The simplest 
track shape that can provide a reasonably smooth transition between two adjacent sections of constant 
curvature track is a shape with curvature and bank angle at the each end that match those of the 
neighboring track section and in which the curvature and bank angle both vary linearly with distance 
along the transition. In plan view, this shape is a spiral commonly referred to by track designers as a 
clothoid spiral. Cartesian coordinates of points along a clothoid spiral are given by the Fresnel 
integrals, which are well known mathematical functions, and for which numerical tables and computer 
algorithms are readily available. See for example Abramowitz & Stegun (ref. 3). Use of this form of 
transition spiral has been a part of standard practice in North American railroad track design for many 
years and continues to be the standard practice today. 
 
However, around 1960 some United States railroad engineers began to give a little attention to the 
question of whether an alternative to the clothoid spiral might provide a better transition between 
railroad track curves. A discussion of the situation may be found in the Association of American 
Railroads Research Department Report No. ER-37 published in 1963 (ref. 4). The problem with the 
clothoid spiral is that, conceptually, at the beginning of the spiral the vertical profile of the outer rail 
changes abruptly from the prevailing profile to a linear ramp with a different slope, and that at the end 
of the spiral the profile changes abruptly back to the prevailing profile. Thus, again conceptually, when 
a vehicle truck enters a clothoid spiral its angular velocity about the longitudinal or “roll” axis is forced 
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to go abruptly from zero to a positive value, and the same thing happens in reverse as the truck leaves 
the clothoid spiral. Conceptually, an instantaneous change in angular velocity about the roll axis would 
imply an infinite angular acceleration and a corresponding infinite torque. In practice, rails have some 
stiffness so that the change in outer rail profile is not instantaneous. In addition, the trucks at the two 
ends of a vehicle enter and leave a spiral at different times, and the vehicle suspension provides some 
cushioning of roll accelerations. As a result, the linear ramp profile of the outer rail of a clothoid spiral 
does not usually cause vehicles to lurch enough for passengers to object. However, from the point of 
view of vehicle dynamics, the traditional clothoid spiral is conceptually defective.  
 
In Europe there is a tradition of attention to the deficiency of the clothoid spiral that goes back into the 
ninteenth century. Moreover, some railroads have made widespread use of alternative spiral 
geometries. The survey by Bjorn Kufver (ref. 5) provides a number of references. 
 
A 1998 paper by the Austrian engineers Gerard Presle and Herbert Hasslinger (ref. 6) reports 
measurements of rail vehicle ride motion disturbance and of damaging systematic lateral force on the 
track structure caused by the clothoid spiral even when the linear ramp profile is deliberately 
“rounded” at each end. 
 

3 Some previous ideas for improving spiral design  
 
In chapter 8 of his very helpful survey published in 1997 (ref. 5), Bjorn Kufver surveys the history of 
proposals for improved spiral geometries and gives functions describing seven noteworthy candidates 
in a consistent notation. The following table lists the seven main spiral shapes described in detail by 
Kufver and provides for each one an illustrative plot and a description of the shape of the second 
derivative of the track curvature with respect to distance along the spiral. 
 
Table 3-1: Alternative forms of curvature for track spirals as listed by Kufver (ref. 5). 
 
Name used for 
spiral shape in 
survey by 
Kufver  
 
(publication 
year is from 
Kufver) 

Description of the shape of 
the 2nd derivative of 
curvature with respect to 
distance 

Plot illustrating shape of curvature and of its first 
two derivatives; The 2nd derivative is similar to 
the roll acceleration and is the shape that is most 
informative. Of the seven shapes listed below, the 
first five have 2nd derivatives that are 
discontinuous at the start and end of the spiral, 
and the first two have one or two additional 
discontinuities. 

Helmert 
(1872),  
 
Schramm 
(1934), or 
 
biquadratic 
parabola 

A step function with two 
steps: a constant positive 
value in the first half of the 
spiral and the opposite 
negative value in the 
second half. 
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Ruch (1903) A step function with three 

steps: a constant positive 
value at the beginning of 
the spiral, the opposite 
negative value at the end of 
the spiral, and in the center 
of the spiral between those 
two a step with value zero. 

 
Bloss (1936) A straight line from a 

positive value at the 
beginning of the spiral, 
passing through zero in the 
center of the spiral, and 
reaching the opposite 
negative value at the end of 
the spiral. 

 
Cosine 
(Vojacec, 
1868) 

A half period of a cosine 
with the maximum of the 
cosine at the start of the 
spiral, the value zero in the 
middle of the spiral, and 
the negative minimum of 
the cosine at the end of the 
spiral. 

 
Gubar (1990) The same as the preceding 

cosine shape except that 
the period of the cosine is 
shortened so that it falls to 
zero before the middle of 
the spiral and the positive 
and negative parts of the 
cosine curve are separated 
by a central zone with zero 
value.  
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Watorek 
(1907) 

A simple cubic function 
that rises from zero at the 
beginning of the spiral, 
bends down to pass 
through zero in the center 
of the spiral, and rises back 
up to zero at the end of the 
spiral.  

 
Sinusoidal 
(Klein, 1937) 

A full period of a sine 
function whose shape is 
similar to that of the 
preceding simple cubic. 
 
Compared to the 2nd 
derivative of the Watorek 
curvature, the maximum 
value is a little higher, the 
initial slope is a little 
lower, and each half of the 
curve is symmetric about 
its midpoint. 

 

 
In his survey, Kufver notes that the central zone of zero acceleration in the Ruch and Gubar shapes has 
the beneficial effect of reducing the maximum value of the warp of the track in the spiral. He notes that 
additional candidate shapes could be obtained by inserting zero acceleration zones in the middle of 
some of the other listed shapes.  
 
As far as the present author is aware, all prior proposals of improved transition spirals have arisen from 
the perspective in which a spiral is regarded as a track alignment shape. The present paper is an 
extension of work arising from a different perspective, namely the perspective that the basic purpose of 
a spiral is to change the bank angle of vehicles from one value to another. The connection between the 
two perspectives comes from the equation for balance between the centrifugal force due to track 
curvature and the perceived transverse component of gravitational force due to banking of the track. 
Leaving aside roll deflection in vehicle suspensions, the well-known equation that expresses this 
balance is  

track_curvature = (g/vb
2) tan (roll_angle), 

 
where g is the acceleration of gravity and vb is the balance speed of the curve. Assuming for the 
purpose of superelevation measurement that the track gage is 60 inches, a superelevation of 6 inches 
corresponds to a bank angle close to 0.1 radians. When roll angles are that small the function tan 
(roll_angle) in the above relation can be replaced by the roll_angle (in radians) itself without 
introducing any more than about 0.5 % error. Therefore, for purposes of physical understanding one 
can write 

track_curvature  =  (g/vb
2)  roll_angle (in radians). 
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Then solving for the roll angle, taking the second derivative of both sides with respect to distance 
along the track, and multiplying by the square of the vehicle velocity, vv, we obtain 
 

roll_acceleration (in rad/sec2) =  vv
2 (vb

2 /g) d2(track curvature)/ds2, 

 
This means that in each plot of Table 3-1, the curve for the second derivative of the track curvature 
shows the shape of the roll acceleration (as a function of time) to which the associated spiral would 
subject vehicles. Looked at from this point of view, the Watorek and sinusoidal alternatives are the 
only ones in which the roll acceleration is continuous and thus free from points at which the first 
derivative of the angular acceleration (the angular jerk) is conceptually infinite. Thus, they are the only 
two that are not objectionable from a dynamic point of view. This paper will propose competing 
shapes that are more attractive dynamically and that are more efficient from the point of view of 
reducing maximum track warp in spirals. 
 
The paper by Presle and Hasslinger (ref. 6) presents test results showing substantial improvement in 
ride comfort and substantial reduction in damage to track through improved contouring of spirals. The 
alignment shape described by Presle and Hasslinger is based in part on the sinusoidal shape shown in 
the preceding table. However, the spiral design approach that they have advanced includes a very 
significant addition relative to previously tested designs. They recognize that as a vehicle traverses a 
spiral the vehicle rotates about some longitudinal rotation axis (i.e., roll axis). They observe that the 
forces required to accomplish this rotation will be minimized if the roll axis passes through the center 
of gravity of the vehicle. They therefore have the center of gravity of a vehicle follow a path 
corresponding to the sinusoidal spiral shape and infer what shape the track should have from the 
combination of that assumption plus some unspecified assumption about how the track bank angle 
should vary with distance.  
 
The greatly improved performance that Presle and Hasslinger have reported results to a significant 
degree from the raising of the height of the vehicle roll rotation axis above the plane of the track. That 
feature is included in the spiral design approach advocated by the present author. Presle and Hasslinger 
credit an article published in 1968 by vonDonges for the proposal that spiral performance could be 
improved by having the nominal spiral shape apply to the path of the vehicle center of gravity, which 
is above the plane of the track, and by devising a shape for the track that would secure that behavior.  
 
As noted above, prior thinking about spiral design has begun with search for a “good” shape for the 
alignment of the spiral. The present paper argues that that is not the best way to begin. 
 
4 The proper objective of spiral design 
 
It is generally accepted that a spiral should provide a connection between two adjacent sections of 
track with differing constant values of curvature and superelevation and that at each end of the spiral 
its curvature and superelevation should match those of the neighboring track. It is also generally 
accepted that, for a vehicle traversing a spiral at design speed, the bank or roll angle of the track should 
vary along with the curvature of the track alignment so that the centripetal acceleration resulting from 
the curvature stays in balance with the perceived transverse component of gravity throughout the 
length of the spiral.  
 
It is argued here that subsidiary to the forgoing two constraints the primary objective of spiral design 
should be to manage the roll motion that a vehicle executes as it traverses the spiral. That is to say, the 
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design process should begin with choice of an advantageous form of roll motion. From that roll motion 
the corresponding spiral shape should then be derived.  
 
Before looking at roll motion per se, it may be helpful to review simple linear motion. The simplest 
form of linear motion that can take an object from one location to another “gracefully” is illustrated in 
Figure 4-1 below.  
 
In that figure, the horizontal axis represents time. Think of the motion as being vertical. 
 
The shallow “S” shaped curve represents the height of the object as a function of time.  
 
The “bell” shaped curve is the first derivative of position with respect to time and is thus the velocity. 
The velocity should be zero at the beginning and end of the motion and can be seen to be so.  
 
The curve consisting of three sloped straight-line segments represents the 2nd derivative of position 
with respect to time and is thus the acceleration. In this example, the acceleration is also zero at the 
beginning and end of the motion. When there is a desire to make a motion “smooth”, attention will be 
directed particularly to the manner in which the acceleration varies with time.  
 
When motion applies to people, an abrupt change in acceleration is perceived as a “jerk”. Accordingly, 
the derivative of acceleration with respect to time is commonly referred to as the jerk. The example in 
this plot was created by selecting a functional form for the jerk that keeps its value limited but that is 
otherwise as simple as possible. It is a three-step function that begins with a constant positive value, 
then drops to the negative of that value, and then returns to the original value.  
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The purpose of this illustration is to get across the concept that in order for a motion to be considered 
“ smooth”  its jerk function needs to be limited so that its acceleration is not discontinuous and does not 
change too rapidly with time. 
 
We apply this same perspective directly to the roll motion of a vehicle about its longitudinal axis. In 
the above plot, the curve for position versus time could equally well represent vehicle roll angle as a 
function of time.  
 
5 Candidate models for the Roll Acceleration of a vehicle traversing a spiral 
 
This section presents fifteen candidate forms for roll angle as a function of location for a vehicle 
traversing a spiral. Each candidate is illustrated by a plot that shows the shape of the roll angle, the roll 
velocity, and the roll acceleration. To facilitate comparison among the models, each plot has its 
distance axis scaled to extend from –2.0 to +2.0 and takes the roll angle from 0.0 to 0.2.  
 
Each candidate is defined by a mathematical formula that is as simple as possible consistent with 
possession of its characteristic features. The formulae given below embody the following conventions. 
a) Distance along the spiral is called ‘s’, and s = 0.0 at the midpoint of the spiral.  
b) The spiral extends from   s =  – a   to   s =  + a so that the spiral has length   2 a. 
c) If a model has a central zone in which roll acceleration is identically zero, then the central zone 
extends from   s =  - f a   to   s =  + f a, so that   ‘f’   is the ratio of the length of the central zone to the 
length of the spiral.  
d) The final roll angle minus the initial roll angle is called   ‘roll_change’. 
 
The formula for the roll acceleration is given for each candidate. The formulae for the roll velocity and 
roll angle can be obtained in closed form (i.e., in terms of standard mathematical functions) for each 
candidate by successive integrations. The integration constant for the roll velocity is always zero. The 
integration constant for the roll angle is the roll angle at the beginning of the spiral.  

 
5.1 Linear  up – down  at ends 
 
The first roll model was discussed in the author’ s preceding paper (ref. 2). It is referred to in this paper 
as the “ linear up-down”  model and is illustrated in the following plot. 
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The characteristics of this model are that the roll acceleration is continuous and piecewise linear with a 
zone in the center of the spiral in which the roll acceleration is zero. The central zone in which the roll 
acceleration is identically zero is shown as going from –1.0 to +1.0 for illustration. However, the width 
of this zone is an adjustable parameter of the model. The roll acceleration in the first zone where  

- a <=  s  <= - f a 
is given by the formula 

4  roll_change · (a + s) / ( a 3 · (1 + f) · (1 – f) 2 ). 
 
Similar expressions apply for the other three zones in which the acceleration is not zero. 
 
For computational purposes is is convenient to use a single more general expression that gives the 
value of the roll acceleration throughout the length of the spiral. The general expression that applies in 
this case is (expressed in C program language notation): 
 
       -2*roll_change  
         *(  SIGN(2*fabs(s)-a*(f+1)) * (a*(f+1)*SIGN(s)-2*s) 
           + SIGN(fabs(s)-a*f)            * (s-a*f*SIGN(s)) 
           + SIGN(fabs(s)-a)               * (s-a*SIGN(s)) 
            ) / (pow(a,3)*(f+1)*(pow(f,2)-2*f+1))  
 
where SIGN(s)  =  +1  for positive s and   =  –1  for negative s and fabs(x) is the absolute value 
function.  Since the general expressions are lengthy and not intuitively illuminating they will not be 
written out for the other piecewise roll models. 
 
5.2 Linear  up - flat - down  at ends 
 
This model is like the linear up-down model except that each zone of non-zero acceleration is divided 
into three sub-zones with the roll acceleration held constant in the central sub-zone. Considering the 
distance of length   (a – f a)   at each end in which the roll acceleration is not identically zero, we take a 
central fraction   c   of  that distance, make the acceleration constant in that fraction, and on either side 
fit a linear up or down ramp that meets the constant acceleration to either side. This fraction   c   
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becomes an additional variable parameter of the model. For illustration we continue with the value   f = 
½   and   adopt   c = 1/3. The plot is: 
 

 
 
The roll acceleration in the first zone where   – a  <=  s  <=  - (1 + f  + c – c f ) a / 2   is given by the 
formula 
 

- 4  roll_change · (a SIGN(s) - s) / ( a 3 · (1 – c 2 ) · (1 + f) · (1 – f) 2 ). 
 
Similar expressions can be written for the other five zones where the acceleration is not zero. 
 
5.3 quartic  at ends 
 
After some preliminary exploration the author judged that it would be desirable to work primarily with 
roll models in which, in addition to the roll acceleration being a continuous function with zero value at 
each end of the spiral, its derivative, the angular jerk, would also be a continuous function with zero 
value at each end of the spiral. This and the following roll models all embody that feature.  
 
This roll model is referred to here as quartic because the roll acceleration is given by a 4th order 
polynomial except in the central zone where it is identically zero. The plot for this model is: 
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Outside of the central zone the function for the roll acceleration may be written as 
                           

30  roll_change · SIGN(s) · (|s| – a) 2 · (|s| – f a) 2 
———————————————————— 

a 6 · (f + 1) · (f - 1) 5  
 
where SIGN(s)  =  +1  for positive s and   =  –1  for negative s.  
 
5.4 quartic & flat at ends 
 
The preceding quartic example can be modified by analogy with the earlier linear up-flat-down 
example. Considering in the quartic & flat model the distance of length   (a – f a)   at each end in which 
the roll acceleration is not identically zero, we take a central fraction   c   of  that distance, make the 
acceleration constant in that fraction, and on either side fit a “ compressed”  half of the former quartic 
that connects smoothly with the constant acceleration to either side. This fraction   c   becomes an 
additional variable parameter of the model. Continuing with the values    f = ½   and   c = 1/3   being 
used for illustration, the plot is: 
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The formula for the outer 4th order segment at the left is  
 

120   roll_change · (a + s) 2 · (a · (c · (f - 1) + f + 1) + 2 · s ) 2 
— — — — — — — — — — — — — — — — — — — — — — — —  

a 6 · (c - 1) 2 · (f + 1) · (1 - f) 5 · (89 c 3 + 23 c 2 + 7 c + 1) 
 
and similar expressions apply in the other zones where the roll acceleration is not constant. In a 
previous paper (ref. 2), the author judged based on qualitative considerations that spiral roll motion is 
more likely to be constrained by limits on angular jerk and track warp than by a limit on magnitude of 
roll acceleration. If that judgment is born out, then models with zones of constant non-zero roll 
acceleration are not likely to be needed in practice. If it turns out that they are needed, then 
practitioners are likely to prefer the “ elevated sine & flat”  model that is given below. Its results would 
be close to those of this “ quartic & flat”  model and its formulae are more attractive.  
 
5.5 Hexic  at ends 
 
This model increases the order of zero at   |s|  =  a   and   |s|  =  f a   from 2 to 3. The plot is 
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The formula for the roll acceleration outside of the middle zone is 
 

 -  140  SIGN(s) · roll_change · ( |s| - a ) 3 · ( |s| - a·f ) 3  
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —  

      a 8 · ( 1 + f ) · ( 1 - f ) 7  
 
5.6 Elevated Sine at ends 
 
This next roll model looks and behaves very much like the preceding quartic model. However, where 
its acceleration is non-zero at each end it is formed by elevating a full cycle of a sine curve. The plot is 
 

 
 
Outside of the central zone the acceleration is given by the expression 
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-  roll_change · SIGN(s) · (SIN( ( 4  pi · |s|  -  pi · a · (3f + 1) )/(2 a · (1 – f ) ) ) + 1) 

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —  
a 2 · (1 – f 2 ) 

 
5.7 Elevated Sine & flat   at ends 
 
This is a variant of the previous model. It is analogous to the quartic & flat model. Its appearance and 
behavior are close to those of the quartic & flat model. The illustrative plot is 
 

 
 
With the additional parameter   c   defined as stated for the quartic & flat model, the formula for the 
outer half cycle of the sine on the left where -a  <=  s  <=  - (1 + f + c – c f ) a / 2   is:  
 

-  roll_change · ( COS( 2 pi · (a - |s| ) / (a · (1 – f ) · (1 - c)) ) – 1 ) 
— — — — — — — — — — — — — — — — — — — — — — — — — — — —  

      a 2 · ( 1 + c ) · ( 1 – f 2 ) 
 
Similar expressions apply in the other three zones in which roll acceleration is not constant. 
 
5.8 Order (2,1) 
 
Each of the preceding roll models is derived from a roll acceleration function constructed with multiple 
zones and with the mathematical form changing from zone to zone. By way of contrast, this model and 
those that follow are based on respective single polynomial expressions that apply over the whole 
length of the spiral. This roll model is referred to as order (2,1) to indicate that the roll acceleration 
curve has a 2nd order zero at each end of the spiral and a 1st order zero in the center of the spiral. The 
models that follow are labeled analogously by the order of the zero at each end of the spiral and the 
order of the zero in the center of the spiral.  
 
The plot for this model is 
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The spiral yielded by this model is similar to the Watorek spiral reviewed by Kufver. The differences 
are the change of the zero at each end from a 1st order zero to a 2nd order zero (to make the jerk zero at 
each end) and the mathematically small difference that this model is applied to the roll motion whereas 
the Watorek model was applied to the track curvature. The formula for the roll acceleration is: 
 

-  105   roll_change · (a + s) 2 · (a - s) 2 · s  
— — — — — — — — — — — — — — — — — —  

16 a 7 
 
5.9 Order (2,3)  
 
Compared to the preceding order (2,1) model, this model has the zero at the center flattened out so that 
the roll acceleration is shifted somewhat from the center toward the ends. The plot for this model is 
 

 
 
The expression for the roll acceleration is 
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-  315  roll_change · (a + s)2 · (a - s)2 · s3   
— — — — — — — — — — — — — — — — — —  

16  a9 
 
 
5.10 Order (4,3)  
 
This model has roll acceleration with a 4th order zero at each end and a 3rd order zero in the center. The 
plot is: 
 

 
 
Compared to order (2,3), this model builds and drops roll acceleration more gently and symmetrically 
but will require larger curve offsets and spiral lengths for given limits on track warp. 
 
The formula for the roll acceleration in this model is 
 

 -  15015  roll_change · (a + s)4 · (a - s)4 · s 3    
 — — — — — — — — — — — — — — — — — —  

       256  a 13  
 
 
5.11 Order (2,5)  
 
This roll model is like the order (2,3) model except that the acceleration is further flattened near the 
center by raising the order of the zero there from 3rd order to 5th order. The motive for pushing the 
acceleration away from the center and toward the ends is that, other things being equal, this reduces the 
track warp in the middle of the spiral. The plot is 
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and the expression for the roll acceleration is 

 
-  693  roll_change · (a + s)2 · (a - s)2 · s5   

— — — — — — — — — — — — — — — — — —  
16  a11 

5.12 Order (4,5)  
 
The plot for this model is 
 

 
 
The formula for roll acceleration in this model is 
 

-  45045  roll_change · (a + s) 4 · (a - s) 4 · s 5  
— — — — — — — — — — — — — — — — — — —  

   256  a 15  
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5.13 Order (2,7)  
 
The plot for this model is 
 

 
 
The formula for the roll acceleration for this model is 
 

   -  1287  roll_change  · (a + s) 2 · (a - s) 2 · s 7 

— — — — — — — — — — — — — — — — — —  
    16  a 13  

 

5.14 Order (3,7)  
 
The continuous polynomial roll acceleration models with angular jerk zero at each end of the spiral and 
continuous throughout that have been displayed so far have a 2nd or 4th order zero at each end. The 
model presented in this section has a 3rd order zero at each end. The plot (showing just the left half in 
light of the symmetries) is: 
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and the formula for the roll acceleration is: 
 

 6435  roll_change · (a + s) 3 · (s - a) 3 · s 7  
— — — — — — — — — — — — — — — — —  

   32  a 15  

5.15 Order (4,7)  
 
The plot is 
 

 
 
and the formula for the roll acceleration is 
 

   -  109395  roll_change · (a + s) 4 · (a - s) 4 · s 7  
— — — — — — — — — — — — — — — — — — —  

         256  a 17  
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5.16 Comparison of the roll model shapes 
 
The next four plots show features of selected roll models together for comparison.  
 
Figure 5-16 shows how selected models compare with respect to rate of rise of roll acceleration in the 
first quarter of the spiral’ s length. 
 
Figure 5-17 shows the full shapes of  the roll accelerations for the continuous polynomial models and 
includes the piecewise elevated sine model for comparison. 
 
Figure 5-18 shows how the shape of the roll acceleration curve for one of the piecewise models varies 
with variation of the parameter   f   that specifies the width of the central zone in which roll 
acceleration is identically zero. 
 
In these figures different curves have different maximum acceleration values because all the curves are 
scaled to correspond to the same value for the change in roll angle between the ends of the spiral, 
namely 0.2 radians. 
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Consider two or more continuous polynomial roll models that have the same spiral length and 
accomplish the same roll_change. If the roll acceleration functions of those models are added together 
after being multiplied by respective weighting factors whose sum = 1.0, the sum will be the roll 
acceleration function of a new roll model that will have the same spiral length and roll_change. The 
same is true for the roll velocity and roll angle functions. As an example, denoting the roll angle 
functions for the order (4,7) and order (4,3) models by  ra47(s)  and ra43(s) respectively and letting  p 
be an adjustable parameter that varies between  0  and  1, a new roll model with a single adjustable 
parameter may be defined based on the roll angle function   ra_new(s) = p ra47(s) + (1 – p) ra43(s). 
Varying parameter p would shift the character of the combination spiral between the greater efficiency 
of the order (4,7) model and the greater gentleness of the order (4,3) spiral in much the same way that 
varying the parameter  f  varies the character of the piecewise raised sine spiral. This idea is not 
explored any further in the present paper, but it could turn out to be useful when standard practices are 
developed based on the methods of this paper. 
 
It should be kept in mind that through variation of parameter   f,   the quartic, elevated sine, and hexic 
models can be made somewhat similar to any one of the continuous polynomial models. This 
flexibility of the piecewise models is illustrated for the case of the elevated sine model in Figure 5-18. 
 



A Better Way to Design Railroad Transition Spirals, Louis T Klauder Jr.                  page 22 
(Preprint submitted to ASCE Journal of Transportation Engineering, May 25, 2001) 

 

 
 
After reviewing the shapes of the roll acceleration curves for these candidate roll models one can look 
back at the previously proposed alternatives to the clothoid spiral as listed by Kufver and illustrated in 
table 3-1 above. Recall that the curve shown in table 3-1 for the 2nd derivative of curvature of each 
prior proposal is approximately proportional to the roll acceleration in the corresponding spiral. As 
noted in the comments following that table, in each of the first five prior proposals as listed by Kufver, 
the roll acceleration has a large discontinuity at the beginning and end of the spiral and so incorporates 
conceptually infinite angular jerks. In the present author’ s opinion, if prior investigators had had the 
perspective that a primary objective of a spiral is to rotate vehicles intelligently, then of the 7 prior 
proposals that are illustrated, only the last two, the Watorek and the “ sinusoidal”  would ever have been 
proposed. Those two could have been included among the candidates considered in this paper. The 
reason they are not is that the present author has found a motive, which will be explained shortly, to 
prefer forms of roll acceleration in which the angular jerk is zero at the ends of the spiral and 
continuous throughout.  
 
In the next plot seven continuous roll functions are shown together along with the piecewise quartic 
and elevated sine roll functions. (The roll functions are all antisymmetric about the point (0.0, 0.1) so 
that showing the left half is sufficient.)  
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6 Raising the roll axis height above the rails 
 
As has already been noted and as emphasized by Presle and Hasslinger (ref. 6), the forces required to 
change a vehicle’ s roll angle will be minimized if the longitudinal axis of rotation passes through the 
center of gravity of the vehicle.  
 
Thinking in terms of passenger vehicles and passenger comfort, one would like to have the vehicle roll 
while traversing a spiral take place about an axis at an elevation somewhere near the shoulders of the 
average seated passenger. Such an axis would probably be somewhat higher than the vehicle center of 
gravity. 
 
When we look later in this paper at the way that the proposed spirals change with change of roll axis 
height we will find a third benefit of having the roll axis height above the plane of the rails. That is that 
for given curve offset, raising the roll axis allows the spiral to become a good deal longer and thereby 
substantially reduces the maximum track warp and maximum roll acceleration in the spiral. This is 
expected to be of practical significance when existing tracks need to be upgraded for higher speeds. 
 
7 Computing the spiral geometry that embodies a roll motion model 
 
The procedure for calculating the spiral geometry yielded by a given roll model is as follows: 
 

a) Choose an initial length for the spiral. If the roll model being used has a central section of zero 
roll acceleration whose width is adjustable, select a value for that width. Together with the known 
values of roll angle at the two ends of the spiral, these choices establish the roll angle function, 
r (s), as a definite function of the path length, s, along the spiral. 
 
b) Integrate the balance equation  

db/ds  =  ( g / vb
2 ) tan ( r (s) )                       (7-1) 



A Better Way to Design Railroad Transition Spirals, Louis T Klauder Jr.                  page 24 
(Preprint submitted to ASCE Journal of Transportation Engineering, May 25, 2001) 

 
where g is the acceleration of gravity, vb is the balancing speed of the spiral, and the curvature 
db/ds is the derivative of the bearing angle of the track with respect to path length. This will yield 
the bearing angle b(s) as a function of path length.  
 
c) Integrate the pair of equations 

dx/ds = cos ( b(s) )                      (7-2) 
and  

dy/ds = sin ( b(s) )                       (7-3)     
to obtain the x and y coordinates of points along the spiral. 
 
As mentioned previously, the difference between tan(r(s)) and r(s) in equation (7-1) above could be 
ignored without very much error. If that approximation were introduced, then the integration of 
step b) could be done in closed form for each of the roll models listed above. However, in the roll 
models that appear most attractive the expressions for  r(s)  are either transcendental or else 
polynomial of degree higher than 2. For these models the integrations called for in this step to 
obtain the x and y coordinates of points on the spiral cannot be done in closed form even if the 
foregoing approximation were introduced. It is therefore necessary to employ numerical integration 
in this step, and, since it must be used here, it may as well be used in step b) as well. With personal 
computing resources what they are today, the use of numerical integration does not seem to be a 
handicap. 
 
d) Based on the vehicle roll angle and the height selected for the vehicle roll axis locate the track 
centerline relative to the roll axis at each end of the spiral. 
 
e) Compute the offset that would exist between the two curves (or tangent and curve) being joined 
based on the computed shape of the spiral. If the spiral is being designed to fit an existing pair of 
curves whose offset is already established, repeat steps a) through e) adjusting the length the length 
of the spiral to find the length that gives the required offset.  
 
f) If the roll model being used has a central zone with zero roll acceleration whose length is 
adjustable, the length of that zone can be varied to find a good balance between the competing 
characteristics of spiral length and maximum track warp on the one hand and maximum roll 
acceleration on the other.  

 
8 Improved spirals derived from the candidate roll models 
 
This section provides comparative spiral characteristics and plots illustrating the fitting of spirals 
designed as proposed herein to reverse curves 308 & 309 on the NE Corridor south of Philadelphia. 
Attention is limited here to this one location to avoid excessive proliferation of variables and because 
reverse curves call for large roll angle changes and yield nice looking plots.  
 
The fifth tabulated case, labeled W308_0_0_6 and illustrated in the first plot, has the vehicle roll axis 
at top-of-rail height so that some geometrical consequences of roll axis height can be observed. All the 
other cases have the vehicle roll axis raised 7.0 ft. above top-of-rail. The 7.0 ft. height was chosen 
partly with passenger comfort in mind and partly to emphasize the effect of roll axis height. Future 
simulations and testing may to show that dynamic behavior for some mix of vehicle types and loadings 
is better with some different height. 
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The following table shows how some basic spiral features vary from model to model and as the width 
of the central zero-acceleration zone is varied in the case of models that include that degree of 
freedom. It also indicates which cases are illustrated by figures. In the labeling, W308 indicates reverse 
curves 308 & 309 with offset = 2.031 ft.  The three cases labeled W308os3 are for the same two 
reverse curves but with the offset between them increased hypothetically to 3.0 ft. to illustrate the 
improved dynamic performance that can be obtained when curve offset is more adequate. 
 
Table 8-1: Spiral Characteristics for selected Roll Models and parameter values 
 

Model 

Width of 
center 

zone as % 
of whole 

Designation Maximum value of Figure 
Spiral 
length 
(ft.) 

   Warp (inch rise 
in 62 ft) 

Roll accel 
(rad/sec^2) 

  

Up-down 0 W308_7_0_0 1.86 0.045  775 
 20 W308_7_0_2 1.68 0.055 8-3 716 
 40 W308_7_0_4 1.59 0.076  649 
 60 W308_7_0_6 1.54 0.124 8-2 585 
 60 W308_0_0_6, 

axis height = 0.0 
1.99 0.206 8-1 453 

       
quartic 0 W308_7_2_0 1.82 0.040  795 
 20 W308_7_2_2 1.66 0.050 8-4 725 

 20 W308os3_7_2_2 1.46 0.039 8-15 823 
 40 W308_7_2_4 1.58 0.071 8-5 653 
 60 W308_7_2_6 1.54 0.115 8-6 586 
       
Raised sine 0 W308_7_3_0 1.79 0.042  805 
 20 W308_7_3_2 1.65 0.053  730 
 40 W308_7_3_4 1.57 0.075  655 
 60 W308_7_3_6 1.54 0.123  587 
       
order (2,7)  W308_7_27 1.58 0.079 8-7 613 
order (3,7)  W308_7_37 1.59 0.072 8-8 653 
order (4,7)  W308_7_47 1.60 0.068 8-9 690 
       
order (2,5)  W308_7_25 1.61 0.064 8-10 647 
order (3,5)  W308_7_35 1.63 0.059 8-11 695 
order (4,5)  W308_7_45 1.64 0.057 8-12 740 
  W308os3_7_45 1.44 0.044 8-16 839 
order (2,3)  W308_7_23 1.68 0.049 8-13 704 

  W308os3_7_23 1.48 0.038 8-17 799 
order (3,3)  W308_7_33 1.70 0.048 8-14 766 
order (4,3)  W308_7_43 1.72 0.047  822 
order (2,1)  W308_7_21 1.92 0.038  822 
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The author began exploration of the spiral design approach advocated herein by looking at spirals 
obtained from the “ linear up-down”  roll model. Figure 8-1 illustrates that with the vehicle roll axis 
located in the plane of the rails (i.e., roll axis height = 0.0), the resulting spiral has track curvature that 
varies smoothly with distance along the spiral. However, as seen in Figure 8-2, with the roll axis height 
raised to 7.0 ft the track curvature acquires a triangular “ jog”  at each end of the spiral and the 
derivative of the track curvature with respect to distance becomes discontinuous. Each “ jog”  mirrors 
the shape of the roll acceleration of the “ linear up-down”  model and arises as a matter of geometry 
from the combination of the roll acceleration and the elevation of the roll axis.  (In reference 2 the 
author failed to include this effect, and the plots labeled as track curvature in that paper are actually 
showing the curvature of the path followed by the vehicle roll axis.) Discontinuity in the slope of track 
curvature like that illustrated in Figure 8-2 can be considered unaesthetic.  
 
One would like to know whether discontinuity in the slope of the track curvature has an adverse effect 
on vehicle motion. There is a discontinuity in the slope of the track curvature at each end of a clothoid 
spiral. However, the deficiency of the clothoid spiral is considered to come not from its track curvature 
per se but rather from the manner in which it mishandles vehicle roll motion. Some information that 
appears to bear on this question has been provided to the author by Steven Chrismer of LTK 
Engineering Services (private communication). Chrismer used the NUCARS (ref. 7) rail vehicle 
motion simulation program to simulate the movement of a freight locomotive over a spiral with 
geometry like that of Figure 8-2. The program predicted that the “ jogs”  in the track curvature would 
excite substantial “ hunting”  oscillation on the part of the locomotive trucks. The author’ s first reaction 
to this problem was to reduce the width of the model’ s central zone of zero roll acceleration so as to 
spread the roll acceleration out and reduce the angular jerk of the model. The resulting spiral was like 
that illustrated in Figure 8-3. In that figure the discontinuities in the slope of the track curvature are 
barely noticeable, and for that spiral the predicted amplitude of truck “ hunting”  was small enough to 
have no visible effect on vehicle ride motion. However, spreading roll acceleration away from the ends 
of the spiral and toward the center is not an efficient way to solve the problem because doing so causes 
an increase in the track warp.  
 
Chrismer’ s information suggested that rail vehicle truck rolling motion could be adversely affected by 
any abrupt change in the slope of the track curvature. In light of that information the author decided to 
look for roll models that would yield spirals whose track curvatures would have continuous first 
derivatives even with the vehicle roll axis raised above the plain of the track. Mathematically that 
meant looking for roll motion models with angular jerk equal to zero at each end and continuous 
throughout. This was the motivation for developing the “ quartic” , “ raised sine” , and “ hexic”  piecewise 
roll models and the order (m,n) continuous roll models set forth in section 5 above.  
 
Note in figures 8-2 through 8-15 that at the beginning of the spiral, the initial change of curvature is in 
the direction opposite to the change accomplished by the spiral as a whole. This is a characteristic 
feature of spirals with raised roll axis and a feature to which Presle and Hasslinger (ref. 6) have called 
attention. It corresponds to the manner in which the rider of a motorcycle steers when approaching a 
turn. The beginning of the steering maneuver serves to set up the bank angle for the turn as a whole. 
 
The “ quartic”  and “ raised sine”  roll models yield very similar spirals. Examples are plotted for 
“ quartic”  model spirals, but “ raised sine”  model spirals would be equally useful in practice and might 
be preferred.   
 
The rest of this section consists of the sample plots. Some further comments are offered in the next 
section.
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Figure 8-1: Plot W308_0_0_6:  Roll axis height = 0 ft; Roll model = “ Linear Up-Down” ; Width of central  0.0 acceleration zone = 60%
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Figure 8-2: Plot W308_7_0_6:  Roll axis height = 7 ft; Roll model = “ Linear Up-Down” ; Width of central  0.0 acceleration zone = 60%
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Figure 8-3: Plot W308_7_0_2:  Roll axis height = 7 ft; Roll model = “ Linear Up-Down” ; Width of central  0.0 acceleration zone = 20%
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Figure 8-4: Plot W308_7_2_2:  Roll axis height = 7 ft; Roll model = “ Piecewise Quartic” ; Width of central  0.0 acceleration zone = 20%
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Figure 8-5: Plot W308_7_2_4:  Roll axis height = 7 ft; Roll model = “ Piecewise Quartic” ; Width of central  0.0 acceleration zone = 40% 
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Figure 8-6: Plot W308_7_2_6:  Roll axis height = 7 ft; Roll model = “ Piecewise Quartic” ; Width of central  0.0 acceleration zone = 60%
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Figure 8-7: Plot W308_7_27:  Roll axis height = 7 ft; Roll model = Order (2,7) 
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Figure 8-8: Plot W308_7_37:  Roll axis height = 7 ft; Roll model = Order (3,7)
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Figure 8-9: Plot W308_7_47:  Roll axis height = 7 ft; Roll model = Order (4,7) 
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Figure 8-10: Plot W308_7_25:  Roll axis height = 7 ft; Roll model = Order (2,5) 
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Figure 8-11: Plot W308_7_35:  Roll axis height = 7 ft; Roll model = Order (3,5)
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Figure 8-12: Plot W308_7_45:  Roll axis height = 7 ft; Roll model = Order (4,5)
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Figure 8-13: Plot W308_7_23:  Roll axis height = 7 ft; Roll model = Order (2,3)
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Figure 8-14: Plot W308_7_33:  Roll axis height = 7 ft; Roll model = Order (3,3)
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Figure 8-15: Plot W308os3_7_2_2:  Curve Offset raised to 3 ft; Roll axis height = 7 ft; Roll model = “ Quartic” ; Center Zone width 20% 
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Figure 8-16: Plot W308os3_7_45:  Curve Offset raised to 3 ft; Roll axis height = 7 ft; Roll model = Order (4,5)
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Figure 8-17: Plot W308os3_7_23:  Curve Offset raised to 3 ft; Roll axis height = 7 ft; Roll model = Order (2,3)
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9 Trade-off between track warp and roll acceleration 
 
Here we observe some of the interplay between the various spiral parameters. This interplay is also 
discussed by Kufver (ref. 5). 
 
When a new route is being designed in open country, the choice of spirals should generally be easy. 
Offsets can be made large and spirals can be made very long, inefficient spiral shapes based on roll 
models such as order (2,1), order (5,3), or raised sine with c = 0.0 can used to construct very gentle 
spirals. The benefit of gentler spirals that can be used when offsets are more generous may be seen in 
the previous examples by comparing spirals whose labels begin W3080s3_ (offset = 3 ft.) with 
counterparts whose labels begin W308_ (offset = about 2 ft.). If the offset of curves 308 & 309 were 
raised to 3 ft., then the spirals labeled W308os3_7_2_2, W308os3_7_23, and W308os3_7_45 would 
give results that are similar to one another and quite attractive. 
 
A challenge arises when an existing route with fixed and inadequate curve offsets needs to be 
upgraded. Looking at the characteristic values in the table of the preceding section, one can observe 
that reducing the roll acceleration and jerk requires spreading the acceleration toward the middle of the 
spiral. When roll acceleration is spread out, then, in order to achieve the required change in roll angle, 
the track warp near the middle of the spiral has to be larger. One reason that use of the clothoid spiral 
has continued for so long is that by moving all of the acceleration to the very ends of the spiral it does 
the best job of minimizing the track warp when the length of the spiral is restricted. Of the solutions for 
the existing 2 ft. offset of curves 308 & 309, none have track warp quite as low as 1.5 in. in 62 ft. The 
solutions that come closest to that low a warp have roll accelerations that may be a little higher than 
desired. Of the examples shown, the ones labeled W308_7_2_4 and W308_7_25 might be considered 
the most attractive. 
 
Note the similarity between spirals W308os3_7_2_2 and W308os3_7_23 on the on hand and on the 
other hand between W308_7_2_4 and W308_7_25. This similarity illustrates the way that variation of 
the width of the central zero acceleration zone in a model that has such a zone gives it some flexibility 
that can be used to help accommodate to differing situations. 

10 The question of allowable track warp 
 
The AREMA Manual for Railway Engineering (ref. 8), Volume 1 Track, Section 3.1.1 recommends 
that the rate of change of superelevation in spirals in main line tracks should not exceed  1.0  inch per 
62 feet in order to avoid applying excessive torsion to the suspensions of 85 foot long cars. That limit 
may be more conservative than necessary in relation to its stated rationale. (The Manual has another 
criterion for maximum rate of change of superelevation in main line track spirals for avoiding 
discomfort to passengers.) 
 
The Federal Railroad Administration publishes various rules among which is rule Track Safety 
Standards, Part 213, Subpart G, Class of Track 6 and Higher (ref. 9). Section 213.331(a) of these rules 
states among other things: “ The difference in crosslevel between any two points less than 62 feet apart 
may not be more than 1.5 inches.”  In Subpart A to F, Class of Track 1-5 of the same standard, section 
213.63 states the corresponding limits in spirals where the local superelevation is less than 6.0 inches 
as 3 in., 2.25 in., 2 in., and 1.75 in. in 62 ft. for track classes 1, 2, 3, and 4 respectively.  
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The FRA and AREMA rules are assumed to be based mainly on experience over many years relating 
to comfort, to safety, and perhaps also to track maintenance cost. That experience has been based on 
operation with clothoid spirals, and the resulting practice has had to cope both with the defective 
dynamic behavior that is experienced at each end of the clothoid spiral and with the twisting of vehicle 
suspensions associated with the warp of the track in the interior of the spiral. It would be a coincidence 
if the track warp limit needed because of defective spiral dynamics turned out to be the same as the 
track warp limit needed to ensure safe suspension performance in the middle of the spiral.  
 
If a clothoid spiral is to be replaced by an improved spiral, then, depending on vehicle suspension 
characteristics, it may be possible to allow a more generous value of track warp in the interior of the 
spiral.   

11 Conclusions 

11.1 Improved spiral geometry is practical 
 
In earlier times when most North American railroad track traditions were developed, there were two 
obstacles to consideration of alternatives to the clothoid spiral. It is argued that neither obstacle applies 
any longer. 
 
First, the mathematical functions (the Fresnel integrals) used for layout of a clothoid spiral were 
available in tabular form so that any civil engineer could lay spirals out. In contrast, any other form of 
spiral is more complex, and layout for any other spirals would have required tedious manual 
calculations. Because personal computers and their software are now so well developed and 
economical, there is no longer any computational obstacle to using alternative spiral shapes. 
 
Second, when track lining was done by hand, lining of curved track was more expensive than lining of 
tangent track. As spirals are a form of curved track, there was an economic incentive to keep spirals as 
short as the needs of ride comfort and safety would allow. With the advent of computer based 
surveying and tamping, the cost for lining curved track should not any more than the cost for lining 
straight track. There should therefore no longer be any prejudice against allowing spirals to be long. 
Kufver (ref. 5) and Presle & Hasslinger (ref. 6) make this same point. 
 
It should also be noted from the sample plots of improved spirals that the lateral shifting of the track 
required to move from a traditional spiral design to an improved design tends to be of the order of 1 or 
2 inches. While clearances are always looked at with great care, shifts of this magnitude are expected 
to manageable without wayside structure changes and without compromise of clearance standards.  

11.2 Improved spirals will eliminate a source of ride discomfort 
Spreading and reducing the roll acceleration in comparison to that experienced upon entrance to and 
exit from a clothoid spiral and raising the axis about which vehicle roll takes place will work together 
to make travel over spirals as comfortable as travel over the neighboring sections of track. 

11.3 Improved spirals will eliminate a cause of track degradation 
Spreading and reducing the roll acceleration in comparison to that experienced upon entrance to and 
exit from a clothoid spiral and raising the roll axis about which the acceleration occurs to a height at or 
somewhat above the average vehicle center of gravity height will eliminate corresponding lateral 
reaction forces applied locally and systematically by vehicles against the track. As demonstrated by 
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Presle and Hasslinger (ref. 6), this eliminates systematic degradation of track alignment at those points. 
It is expected that the geometry developed for some spiral situations using the concepts presented here 
could be similar to geometry that Presle and Hasslinger would develop for those situations and that the 
performance improvements relative to traditional spirals could also be similar. However, the author 
believes that designs based on the models presented herein can sometimes be a little better and, more 
importantly, that the approach to spiral design described herein represents an improvement from a 
conceptual point of view. 

11.4 Reverse curves can be fully elevated 
In traditional North American track design practice there is a requirement that adjacent reverse spirals 
be separated by a section of tangent track (ref. 10). This requirement is a mistake from the point of 
view of vehicle dynamics. If the initial reason for that requirement was that it made the tasks of line 
location and surveying easier when those tasks had to be carried out manually, then there may no 
longer be any reason to perpetuate that requirement. This observation is independent of the question of 
how spirals may best be shaped.  
 
However, the combination of dropping that requirement and using the spiral design method advocated 
here offers a distinctive benefit for reverse curves.  Namely, as illustrated in the plots presented herein, 
that combination will allow the desired superelevations for some reverse curves that cannot be 
adequately superelevated based on traditional practice. 
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